
A CLUSTERING APPROACH TO OPTIMIZE ONLINE DICTIONARY LEARNING

Nikhil Rao�

University of Wisconsin-Madison
Fatih Porikli

Mitsubishi Electric Research Labs

ABSTRACT

Dictionary learning has emerged as a powerful tool for low level im-
age processing tasks such as denoising and inpainting, as well as
sparse coding and representation of images. While there has been
extensive work on the development of online and offline dictionary
learning algorithms to perform the aforementioned tasks, the prob-
lem of choosing an appropriate dictionary size is not as widely ad-
dressed. In this paper, we introduce a new scheme to reduce and op-
timize dictionary size in an online setting by synthesizing new atoms
from multiple previous ones. We show that this method performs as
well as existing offline and online dictionary learning algorithms in
terms of representation accuracy while achieving significant speedup
in dictionary reconstruction and image encoding times. Our method
not only helps in choosing smaller and more representative dictio-
naries, but also enables learning of more incoherent ones.

Index Terms— Online Dictionary Learning, Clustering

1. INTRODUCTION

Dictionary learning (DL) based sparse coding has emerged as the
state of the art in many low level image processing tasks such as
denoising, inpainting, and demosaicking [3, 6]. It offers more ro-
bustness and data dependent representations compared to standard
sparsifying transformations like DCT and wavelets.

DL aims to represent data as a linear combination of learned
bases, which can be posed as the following optimization problem:

{D̂, Â} = argmin
D,A

1

2
‖X −DA‖2F + λ‖A‖p (1)

where X is a matrix with data points as columns, D̂ is a dictionary

to be learned , and Â is the set of coefficients such that X ≈ D̂Â. λ
is a regularization parameter. 0 ≤ p ≤ 1, with ‖A‖p defined as:

‖A‖p =

(∑
i

∑
j

|Aij |p
) 1

p

The penalty term promotes sparsity in the coefficients Â. We con-
sider p = 1, making the regularization term, and subsequently the
entire equation (1) convex.

The function to be minimised in equation (1) is not jointly con-
vex in A and D, but it becomes convex in one variable keeping the
other fixed. Typical dictionary learning algorithms (e.g. KSVD [1],
online [6]) consist of alternating between a sparse coding stage and a
dictionary update stage. The authors in [6] show that the online dic-
tionary learning procedure has a computational load of O(k2m +
km+ ks2) ≈ O(k2), where k is the dictionary size (the number of
atoms in the dictionary) and m and s are the dimension of data and
sparsity of the coefficients (in the sparse coding stage) respectively.

�This work was performed at Mitsubishi Electric Research Labs.

Moreover, in [9] the sample complexity of dictionary learning is de-
rived to be O(√k). So, the size of the dictionary has an impact on
both the computational and sample complexity of the algorithm.

Typically, the size of the dictionary is fixed before learning. A
trade-off has to be made between choosing a larger, slow learning,
but better fitting dictionary and a fast learning, smaller dictionary.
This motivates our problem: Can we efficiently learn a dictionary
that is “optimal” in size, so that on the one hand it provides good
representation of the data, and on the other it is not too large so as to
burden computational resources? Moreover, can the small dictionary
that is learned also provide a very good fit to the data?

Past work has addressed this problem in an offline setting [7],
learning from a predefined superset [5], discarding atoms that van-
ish [11] or adding a new regularization term that promotes smaller
dictionaries [12]. We propose a dictionary size adaptation method
that learns a smaller dictionary and performs comparably to the
state-of-the-art. Our work differs from the above in several aspects.
Firstly, we assume an online setting, where we believe the need
for gains in computational time and memory requirements is most
needed. Secondly, we do not prune the dictionary by discarding
atoms [7], but use a density based approach to synthesize new atoms
from several atoms “close” to each other. We show in our simula-
tions that the loss in redundancy arising from the clustering of atoms
does not affect coding accuracy. Thirdly, we do not make restrictive
assumptions on the dictionary or the data itself, except that the atoms
in the dictionary lie on the unit sphere, a valid assumption so as to
prevent the reconstruction coefficients from arbitrarily scaling.

Our method has the effect of preventing atoms of the dictionary
from clumping together. This has another advantage: It is argued
in [8] that incoherent dictionaries perform better in terms of image
representation than coherent ones, by preventing overfitting to the
data. Incoherence of the dictionary atoms also plays a role in de-
termining the performance of the sparse coding algorithms. Since
incoherence depends on the separation (and the ensuing dissimilar-
ity) between the atoms, merging nearby dictionary elements into a
single atom promotes incoherence.

Online dictionary learning [6] has been proven to outperform
standard batch learning methods in terms of speed [1]. We provide
a framework that further speeds up the online learning method, and
hence our method is inherently several orders of magnitude faster
than batch processing methods.

1.1. Notation

Let xi ∈ R
n be the ith sample of training data X ∈ R

n×p. The
dictionary is denoted by D. We suppose we start with an initial dic-
tionary of size k0, so that D0 ∈ R

n×k0 . We assume we use a kernel
K(·) with an associated bandwidth h for the dictionary resizing step.
After resizing, the dictionary will be denoted by D. Subscripted
variables xt, Dt indicate the corresponding variables at the tth it-
eration. Superscripts di, ai indicate columns of the corresponding
matrices.

1293978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2. OUR ALGORITHM

Our algorithm, Clustering based Online Learning of Dictionaries
(COLD), employs the mean shift clustering procedure [2] to discover
modes in the distribution of the atoms. Being nonparametric, it pre-
cludes the need to know the number of clusters in advance. It is
important to note here that the clustering is done on the (empirical)
distribution of the dictionary atoms, and not on the data. We outline
our algorithm in Algorithm 1 after providing an intuitive explanation
as to how the scheme works and why it is beneficial.

(a) (b)

Fig. 1. Fig. 1(a) shows the distribution of the data (blue circles) and
learned dictionary of size 20 (green) for the data. Note how some
atoms are very close to each other, depicted by red circles. Fig. 1(b):
learned dictionary of size 9 for the data. Now, the atoms are further
spaced apart (best seen in color).

Consider data X distributed as in Fig. 1(a). We start with an ini-
tial dictionary of size k0 distributed randomly over the unit sphere.
We see that, after training, the atoms of the dictionary align them-
selves according to the data as in Fig. 1(a). After alignment, one can
see that some atoms are clumped together in pairs or triplets.

When two or more atoms are very close to each other, it is highly
unlikely that more than one of them will be used to represent a data
point simultaneously due to the sparsity constraint on the representa-
tion coefficients. Referring to Fig. 1(a), only one atom per “clump”
of atoms will be used per data point for representation.Hence, when-
ever dictionary atoms get “too close”, we can merge them, leading
to a situation more akin to that seen in Fig. 1(b).

Since the setting is online, we receive data points in a sequential
manner. In the sparse coding step, we have a single data point xt and
we obtain the corresponding coefficients αt

αt = argmin
α

1

2
‖xt −Dα‖2 + λ‖α‖1

Then, to update the dictionary for known α′
ts, one needs to obtain

the solution for

Dt = argmin
D

1

t

t∑
i=1

[
1

2
‖xi −Dαi‖2 + λ‖αi‖1

]
.

In the dictionary update stage (refer Algorithm 1), we restrict the
atoms to lie on the unit ball unlike [6] so as to make the clustering
easier.

djt =
uj

‖uj‖ (2)

Note here that we restrict the dictionary atoms to lie on the unit
Eucledian ball, and not in it. This makes the clustering easier, by
ensuring the vectors are normalized.

We do not apply the mean-shift until minIters iterations has
passed. This is because, in the online case, we need to wait until
the dictionary learning procedure has adapted itself to a sufficient

Algorithm 1 Algorithm: COLD

Inputs : x ∈ R
n iid∼ p(x), λ, D0 ∈ R

n×k0 , maxIters,
minIters, h

Initialize : A ∈ R
k0×k0 ← 0, B ∈ R

m×k0 ← D0, t = 1
,D0 ← D0

while t ≤ maxIters do
Draw xt ∼ p(x)
αt = argmin

α

[
1
2
‖xt −Dt−1α‖2 + λ‖α‖1

]
A← A+ αtα

T
t

B ← B + xtα
T
t

if t ≥ minIters then
Dt−1 = MeanShift(Dt−1, h)
if Dt−1
= Dt−1 then

A← 0, B ← Dt−1 {resetting past information}
h = h/(t − minIters + 1) {for proving convergence,
can be omitted}

end if
end if
Compute Dt using Algorithm 2 of [6], with Dt−1 as warm
restart
t← t+ 1

end while
Output : Dt

amount of data, before we start modifying it. One can think of a
degerate case where , after the first iteration, all the dictionary atoms
are perfectly aligned, so that all atoms are in the same cluster, lead-
ing to a dictionary of size 1 after clustering. To prevent this, we wait
for minIters iterations. In most cases, waiting for k0 iterations be-
fore running the mean-shift procedure constitutes a sufficient waiting
time.

After clustering, if the dictionary is shrunk, i.e. Dt
= Dt, ma-
trices A and B are reset. This is because the “merged” atoms give
rise to a new dictionary, and it makes sense to treat the procedure
as if restarting the learning algorithm with the new dictionary as an
initialization. This can be seen as analogous to periodically flushing
the history in the usual online learning scenario. The procedure can
be improved by not discarding history corresponding to the atoms
in the dictionary that are retained, but a search will require more
computations, possibly obliviating the complexity gains acquired by
clustering.

3. COHERENCE, COMPLEXITY, CONVERGENCE

COLD learns a more incoherent dictionary, achieves speedups in
computational complexity and also converges to a local minimum
almost surely. Due to space constraints, we defer detailed proofs
and analysis exist for a longer version of our work.

Fig. 2 pictorially shows how the coherence is reduced as nearby
atoms are clustered and replaced by a single atom. For represen-
tation purposes, atoms are assumed to lie on the unit circle in two
dimensions

Smaller dictionaries have lower sample complexity. The amount
of reduction in computational complexity depends on the version
of mean-shift clustering used. Traditional mean shift has complex-
ity superlinear in the number of data points [4], generally O(k2).
We consider here this setting and show that even this achieves a re-
duction in complexity. So by default, faster mean-shift algorithms
(e.g. [10]) will perform much better.

1294

(a) D (b) D̄

Fig. 2. Initial dictionary on the unit disc (Fig. 2(a)). The small
shaded area corresponds to the angle between the atoms, which de-
cides the initial coherence μ(D). The bumps outside the disc cor-
respond to the modes of the kernel density estimate over the atoms.
Fig. 2(b) shows the atoms after clustering, and the corresponding
shaded region indicates the angle determining the new coherence.
Clearly μ(D̄) < μ(D)

It is natural that every mean-shift will not result in a reduction
of dictionary size. Suppose M of them do, so that for every mj

iterations, j = 0, 1, · · ·M , the dictionary size reduces sequentially
from k0 to kj . Of course,

∑M
j=0 mj = n, where n is the number

of iterations. Considering the mean-shift itself to have a (maximum)
complexity of O(k2

j), we have the total complexity of COLD to be
less than ODL (the method in [6]) provided that we have

2
M∑
j=0

mjk
2
j ≤ nk2

0 (3)

This inequality will strictly hold as long as mj is large and kj << k0
for j ≈ M . That this holds in most cases has been supported by
experimental validation, as we will see in section 4.

The proof of almost sure convergence follows closely along the
lines of that in [6]. We omit it here due to space constraints. The key
idea is that we can show that as h → 0, mean shift clustering stops
modifying the dictionary, and so the proof in [6] can be applied. A
similar situation holds for constant h, though the analysis is harder.

4. EXPERIMENTS AND RESULTS

We compare ODL and COLD in terms of speed. Speed is measured
in terms of the number of seconds it takes for the algorithm to both
learn as well as perform sparse coding after the dictionary is learnt.
Table 1 compares the performance of the methods, as the initial dic-
tionary size is varied. The test images were taken from the “back-
ground” dataset at Caltech 1. The dataset contains 450 grayscale im-
ages of various scenes. The bandwidth for the mean shift algorithm
was set at 0.5. The images were broken down into 5× 5 overlapping
patches, which yields the size of each dictionary atom to be 25.

Note that, the increase in speed does not compromise the accu-
racy of encoding. Another thing is that, regardless of the initial num-
ber of dictionary atoms we start with, COLD returns nearly the same
dictionary size all the time (≈ 2× overcomplete). This underscores
the underlying idea of looking to find an “optimum” dictionary size,
which is data dependent. We see that for a small dictionary, COLD
is slower than ODL, underscoring the need for the condition in equa-
tion (3) to hold. It also suggests that if the “correct” dictionary size
is already known, then one could initialize the initial dictionary of

1http://www.vision.caltech.edu/html-files/archive.html

Dsize method time(sec) MSE(std.dev)
50 ODL 11.855 0.00474(0.0030)
41 COLD 17.748 0.00475(0.0029)

100 ODL 20.902 0.00465(0.0030)
40 COLD 18.201 0.00471(0.0029)

150 ODL 34.913 0.00462(0.0030)
50 COLD 23.445 0.00473(0.0029)

200 ODL 49.840 0.00461(0.0029)
45 COLD 24.148 0.00472(0.0029)

Table 1. Comparison of ODL and COLD on the “background”
dataset. The first column indicates the final dictionary size after
learning. Note that in case of ODL, final size = initial size. We
can see that, as the initial dictionary size increases, COLD is much
faster, while the loss in MSE is negligible

this size, and clustering of the atoms will not further reduce the size
of the dictionary significantly.

In single images, even after a single iteration, the dictionary size
reduces and we obtain a significant speedup in the algorithm. For the
plot in Fig 3, we used 6000 patches for training, merely to display the
speedup of the algorithm. The remainder of the patches constituted
the test set. We see that ODL takes 4× in training than COLD. The
“jump” observed in the plot is due to the fact that the dictionary size
drastically reduces when the mean-shift is applied, and the entire
learning process has to be restarted.

Fig. 3. Speedup obtained on 6000 patches dataset (best seen in color)

ODL COLD

Training Denoising

260 105

Training Denoising

98 24

Table 2. Comparison of ODL and COLD denoising times (Fig. 4.

Fig. 4 compares COLD and ODL in a denoising setting. We
used 10000 patches of size 8 × 8 to train the dictionary. We then
used the learned dictionary to denoise the entire image (a total of
255K 8× 8patches). We see that COLD significantly speeds up the
learning and reconstruction process (See Table 2).

Figures 5 and 6 compare the ability of COLD and ODL to learn
dictionaries from a small fraction of the data. We start with an origi-
nal image of size 512× 512, extract 8× 8 overlapping patches from
it. Of these, we consider only 10000 patches selected randomly for
learning a dictionary. We then use the learned dictionary to recon-
struct the entire image. The initial dictionary was sized 64 × 256
in all cases. It can be seen that COLD gives nearly identical results

1295

Original Noisy 19.02dB

ODL 27.34dB COLD 26.42dB

Fig. 4. Image denoising samples. COLD only needs less than 20%
of the computations required by ODL, as seen in Table 2.

to ODL. “Training” refers to learning the dictionary, and “encod-
ing” refers to creating the sparse coefficients once the dictionary is
learned.

5. CONCLUSIONS

We introduced COLD, a method to achieve speedups in online dic-
tionary learning by employing clustering of dictionary atoms. We
show that one can achieve a considerable speedup in computation
times when there is an inherent clustering step in the dictionary
learning framework. The method also aids in learning more inco-
herent dictionaries.

6. REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An al-
gorithm for designing of overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Processing, 54(11), 2006.

[2] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Trans. Pattern Analysis
and Machine Intelligence, 24(5), 2002.

[3] M. Elad and M. Aharon. Image denoising via learned dictio-
naries and sparse representation. IEEE Computer Vision and
Pattern Recognition, 2006.

[4] D. Freedman and P. Kisilev. Fast mean shift by compact den-
sity representation. CVPR, 2009.

[5] A. Krause and V. Cevher. Submodular dictionary selection
for sparse representation. Internatinal Conference on Machine
Learning (ICML), 2010.

[6] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning
for matrix factorization and sparse coding. Journal of Machine
Learning Research, 11, 2010.

ODL, PSNR=32.64dB COLD, D=168, PSNR=32.56dB

ODL, PSNR=30.22dB COLD, D=154, PSNR=30.19dB

Fig. 5. Images on the left are the reconstruction obtained from ODL
and the one on the right is the reconstruction using COLD. D denotes
the dictionary size.

Fig. 6. Reconstruction times taken by ODL and COLD.

[7] R. Mazhar and P. Gader. EK-SVD: Optimized dictionary de-
sign for sparse representations. International Conference on
Pattern Recognition, 2008.

[8] I. Ramirez, F. Lecumberry, and G. Sapiro. Sparse modeling
with universal priors and learned incoherent dictionaries. IMA
preprint Series 2279, 2009.

[9] D. Vainsencher, S. Mannor, and A. Bruckstein. The sample
complexity of dictionary learning. COLT, 2011.

[10] P. Wang, D. Lee, A. Gray, and J. Rehg. Fast mean shift with
accurate and stable convergence. AISTATS, 2007.

[11] M. Yaghoobi, T. Blumensath, and M. Davies. Regularized dic-
tionary learning for sparse approximation. EUSIPCO, 2008.

[12] M. Yaghoobi, T. Blumensath, and M. Davies. Dictionary learn-
ing for sparse approximations with the majorization method.
IEEE Trans. Signal Processing, 57, 2009.

1296

